
FACT SHEET

A solution overview for Google Cloud Platform

Modernization Platform as a Service (ModPaaS)

ModPaaS: Collaborative modernization
platform
ModPaaS is a purpose-built, customizable cloud
solution that allows for highly collaborative
customer participation throughout the
journey of a legacy application modernization
project. By providing you with access to our
ModPaaS solution, you can move through the
modernization journey at your own pace in a
completely self-service manner, with assistance
from our modernization specialists, or in a fully
managed approach (similar to a traditional project
engagement).

ModPaaS is available for customers looking to
analyze mainframe legacy code, understand
interrelationships, complexity, dependencies and
mine business rules. These are essential activities
in order to successfully plan for any complex
modernization project. Having access to ModPaaS
allows you to:

 > Perform a comprehensive assessment of your
existing legacy applications, including asset
count and asset type categorization, missing
and unreferenced components, program flows,
impact and code path analysis, reporting and
documentation, and more.

 > Categorize objects and applications to
determine disposition options (e.g. rehost,
automatically refactor, reengineer, replace,
etc.), and drive ongoing modernization
initiatives with different levels of assistance.

 > Trace and isolate COBOL-based business
rules which can be reused for reengineering
initiatives.

 > Develop a strategic modernization plan which
includes recommendations and estimates that
best suit your individual technical and business
needs.

 > Select and extract code to be modernized.
As an example, you can select code specific
to the UI layer or data access objects to aid
microservices development efforts. Post-
assessment options are described later in this
document.

ModPaaS: Solution Overview for Google Cloud
Platform

Using ModPaaS for an application assessment
At the heart of ModPaaS is the Advanced
Enterprise Application Viewer (eav), an automated
assessment solution that has been used to
process millions of lines of legacy code. The
following image represents the ModPaaS
assessment process, and the numbers in
green represent each step in the process and
correspond to the related text that follows.

1. Within your Google Cloud Platform account,
launch a Windows-based ModPaaS instance.

2. Populate the eav asset repository with legacy
source code and data definitions.

3. Automatically parse assets, produce asset
counts, categorize types, perform impact analysis
and code path analysis, generate program flows,
dependencies, and create numerous reports and
documentation. Steps 2 and 3 are an iterative
process, performed until all assets reported as
being missing are resolved.

4. Collaboratively analyze results and further
categorize assets into specific application
groups based on possible disposition strategies.
Discuss modernization options and associated
migration tasks, service levels and pricing, define
statements of work (SOW), Advanced.

ModPaaS: Solution Overview for Google Cloud
Platform

ModPaaS capabilities and benefits
Using ModPaaS can result in significant business
benefits, including a simplified, lower cost
modernization project by dramatically reducing
the scope of existing applications, and refining
the modernization disposition strategy.

The main benefits of using ModPaaS for an
assessment include:

 > Complete visibility into the legacy
system – Assets loaded into ModPaaS are
automatically parsed, counted, and categorized
by asset type. Reports and documentation
are automatically generated, and program
interactions are created to represent the
overall program flow, individual paragraph flow,
and inter-relationships between the programs,
data, and other component types.

 > Reduced application footprint – Results
can be interactively analyzed to resolve
assets being reported as missing, unused,
or unreferenced. This is a critical task as it
reduces the cost, complexity, and risk of the
future modernization project. The following
table lists actual scope reduction results
from 20 past projects, ranging from 40 to 70
percent.

 > Global reports and documentation – Each
time an asset is parsed, eav automatically
updates its documentation repository,
generating multiple reports which can be
viewed/downloaded as PDFs or exported into a
variety of formats (e.g. CSV, Excel, XML and DIF)
for further manipulation. Key reports include:

ModPaaS: Solution Overview for Google Cloud
Platform

 > Object Summary: a summary of object
type count and line count within object
type. The totals are displayed at the
bottom of the report. The Statement
Count and Comment Count columns are
only visible for component types that
eav creates metrics for.

 > Repository Detail: an alphabetical list
of every object in the repository. Total
objects listed are displayed at the end
of the repository section and the total
number of objects listed in the report
appears on the last page.

 > Complexity Detail: the maximum,
minimum and average cyclomatic
complexity values for every object
in each repository. A cyclomatic
breakdown appears at the end of the
report.

 > Code clean-up – ModPaaS assists with the
clean-up of COBOL code to make future
maintenance of the code more efficient.
Cleaning is provided at three levels:

 > Source code file level: Identify entry
points for both online (transaction
code) and batch (job) source code. Using
these entry points, eav automatically
identifies programs and copybooks
which are potentially not used so may
be deleted from the code base.

 > Paragraph/Section level: Identify
unreachable paragraphs and sections
within the code and remove them.

 > Line of code level: Identify and remove
unreachable executable lines in the
code and unused variables in the code
and copybooks.

Figure 2: ModPaaS eav Dead code analysis

ModPaaS: Solution Overview for Google Cloud
Platform

 > Business Rules Mining – eav assists with
reengineering initiatives such as the creation
of microservices functionality by allowing you
to mine mainframe COBOL business rules from
within application logic. Select rules can be
extracted from your code and saved as COBOL
– then automatically refactored to the target
language (e.g. Java, C#) and further optimized
and refactored as required. Starting from the
original business rules ensures that you at
least understand the base usage requirements
from the code before building out any new
functionality.

As shown below, a tree diagram is presented
for each application program or object, allowing
you to collapse or expand each decision point
to isolate, review, or extract the business
rules. Gaining an understanding of inter
and intraprocess flows is important in the
extraction of business rules and in developing
independent, single-function components. This
level of understanding is critical to optimization
of cloud-native microservice approaches, where
the extraction of distinct business rules and
transformation to new languages and platforms is
required.

Figure 3: ModPaaS business rules mining

 > Application categorization – ModPaaS
bridges and processes the top down results
of a business assessment with the bottom up
results of a technical assessment, providing
the ability to confirm, invalidate or refine your
target disposition strategies. Categories can
be created for a single application, multiple
applications, or even an identified sub-
domain following a service modelling exercise.
Entry points into a category are defined (e.g.
screens, transactions, batch jobs, etc.) and
the results dynamically generated to show
associated dependencies and interactions
between objects in the category. From these
results you can determine how tightly coupled
specific objects in a given category are, what
the complexity values of specific objects within
a category are, or what the interaction points
between multiple categories are.

ModPaaS: Solution Overview for Google Cloud
Platform
Post assessment modernization options
We support multiple modernization options
post-assessment which map to the different
disposition options and categories identified,
including:

 > Rehosting COBOL and Natural applications to
cloud-based platforms.

 > Automatically refactoring COBOL and
Natural-based applications to Java or C#, and
modernizing legacy data stores to standard
or cloud-specific relational databases.
Different levels of application refactoring and
optimization can be applied to achieve the
desired level of elasticity and availability.

 > Reengineering selected business functions or
application groups to support a cloud-native
architecture such as microservices. This option
can be driven from ModPaaS with different
levels of support from Advanced.

 > Determining specific functionality to be retired
or replaced with a packaged application.
Similar to reengineering options, this can be
driven from ModPaaS with different levels of
support from Advanced.

You can obtain estimates from Advanced for each
different modernization option and the related
service tasks – and can decide on the required
level of engagement for both parties.

The following image represents the end-to-end
modernization approach with ModPaaS. Steps 1
through 4 are specific to using ModPaaS during
an assessment and are described previously.
Steps 5 through 9 relate to post-assessment
modernization activities, where identified COBOL
source code is extracted, analyzed further to
determine fixed-bid conversion pricing, and
automatically refactored to Java or C#.

Figure 4: ModPaaS end-to-end modernization process overview

ModPaaS: Solution Overview for Google Cloud
Platform
Steps for refactoring of identified COBOL source
code or business rules to Java or C#:

5. Identify select assets to be analyzed and
refactored, and export them from ModPaaS into
an AdvancedcGitLab SCM repository.

6. Extract assets from GitLab into a ModPaaS
conversion system running in an Advanced
Google Cloud Platform account. Analyze code to
determine refactoring effort and delivery options
with fixed-bid pricing. When ready to proceed,
execute the code refactoring process, returning
code to a level of completeness based on the
selected delivery option, ranging from clean
compile through to refactoring with functional
equivalence. The next release of the ModPaaS
solution will support a completely automated and
dynamic conversion delivering code with default
customization options. Slated to be available later
in 2018, this version will not require services or
support.

7. Export and populate the refactored code into a
target GitLab SCM repository, ready for continued
modernization.

8. Optionally create a continuous integration
workflow for the refactored code – either on
separate system, or existing ModPaaS system.

9. Manage refactored code in preferred
development environment and continue
modernization efforts.

The following sections provide a brief overview
of the different post-assessment modernization
options we support.

Automated refactoring

COBOL-based source conversion
One of our core offerings is the automated
refactoring of COBOL to Java or C#. We use our
proven refactored solution which supports
specific asset types such as CICS and IMS COBOL,
batch COBOL, and associated assets such as
BMS, MFS, JCL, in addition to non-mainframe
COBOL dialects. Providing 100% automation is
the aim of every automated refactoring project
we deliver - this applies to the repeatability of

the refactoring process once specific rules and
configuration options have been iteratively
applied.

We offer different code refactoring service levels
based on who is leading versus supporting
the refactoring effort, and the required level
of automation. A Service Level Agreement is
created for each refactored project. All code to
be refactored is populated directly from eav into
a GitLab repository, and the refactoring process
triggered via continuous integration. refactored
code is returned to a level of completeness that is
mutually agreed upon, ranging from:

 > Base level automated refactoring: No
services or support, delivers refactored code
with default customization options.

 > Refactoring with clean compile: Requires
a level of service and support which includes
customization and is integrated with your team
over a fixed period of time.

 > Refactoring with functional equivalence:
Similar to a traditional project approach
offered today. Automatically refactoring
COBOL and Natural-based applications to
Java or C#, and modernizing legacy data
stores to standard or cloud-specific relational
databases. Different levels of application
refactoring and optimization can be applied
to achieve the desired level of elasticity and
availability.

A future roadmap item is to provide the ability
to customize rules and refactor options via
a web-based interface into our refactored
tooling, allowing you to lead more of customized
refactored effort.

Natural-based source conversion
Another core offering is the automated
refactoring of Natural to Java, C# or COBOL using
eav. In addition to supporting the refactor of
Natural source code, the automated refactoring
solution also addresses the replacement of
the utilities that are typically part of existing
mainframe environments, including Entire
Operations, Entire System Server, EntireX, Natural
Construct, Natural Security, and Com-plete.

ModPaaS: Solution Overview for Google Cloud
Platform
Additional-based source conversion
There is often more than COBOL and Natural
applications to convert. You’ll most likely have
other components such as Easytrieve, SAS,
Assembler, PL/I, FOCUS, REXX, etc., which are
tightly integrated with the selected COBOL or
Natural-based applications you want to convert.
This is a perfect example where the collaborative
nature of ModPaaS is leveraged. We have
additional transformation solutions for other
asset types such as IDMS ADS/O, in addition to
several conversion solutions/tools for converting
assets such as Assembler, CA Gen, CA-Telon, CA-
Easytrieve, PL/I and VA Gen to Java or C#.

Optimization
Applications can be further refactored and
optimized further during an automatic refactoring
project in order to achieve the desired levels of
elasticity and availability. Legacy workloads are
stateful by nature, and will therefore require
modifications to be able to take advantage of the
stateless nature of a cloud environment. During
the assessment we will work with application
SMEs to identify and discuss areas where state
may be stored on the application tier. Possible
recommendations may include leveraging a
distributed caching layer to support state, and
moving any local file access to a scalable shared
file system.

Reengineer
Your ultimate goal might be to distill your existing
monolithic workloads down into a set of loosely
coupled microservices. This is an extremely
complex task considering you’re likely dealing
with millions of lines of tightly integrated code.
While there’s no magic bullet, eav is perfectly
suited to aid in the definition and creation of
the microservices. It’s obviously important
that you first scope and model the required
microservices using proven top-down analysis
driven approaches and techniques such as Event
Storming and Domain-Driven Design (DDD).
These workshop-style sessions are led by the
business team during the Assessment phase, and
should incorporate user experience.

Eav is used to analyze and validate the top-
down results, and support the creation of new
microservices functionality. With eav, you can:

 > Define application or sub-domain categories
with entry points you define, and from each
entry point automatically generate top-down
relationships highlighting the dependencies
between elements (i.e. called programs,
copybooks, etc.) required to support the
scoped microservice function. Once aligned
with the bounded context results of a Domain-
Driven Design, the required element scope can
be further refined for the specific microservice
function.

 > Automatically generate Java or C# code for
any functionality deemed feasible to be
reused. You can also aid any new microservice
development efforts by converting selected
code such as the UI layer and data access
objects.

 > Trace and isolate COBOL-based business rules,
then save as COBOL ready for refactoring to
Java or C#. Automatically refactoring COBOL
and Natural-based applications to Java or
C#, and modernizing legacy data stores
to standard or cloud-specific relational
databases. Different levels of application
refactoring and optimization can be applied
to achieve the desired level of elasticity and
availability.

Rehost (also known as Replatform)
We support the rehosting of Software AG Adabas/
Natural in addition to standard online and batch
COBOL-based workloads. Our ATP solution
rehosts Adabas/Natural based workloads. Adabas
is converted to a relational database such as
Db2, SQL Server or Oracle, while the ATP solution
enables the Natural code to be seamlessly
moved. ATP interprets and executes each Natural
command, and the applications can execute
against the new relational database without
changes to the Natural syntax. We also provide
a standard COBOL rehosting offering backed
by resources with extremely deep experience,
having been responsible for delivering some of
the largest rehosting projects worldwide over the
past 20+ years.

https://modernsystems.oneadvanced.com/software/application-transparency-platform-atp/

ModPaaS: Solution Overview for Google Cloud
Platform
Replace
Using eav you can identify and isolate application
groups targeted for replacement with a packaged
application (COTS) – and in turn determine the
net-effect caused by the dependency on other
applications. Our Data Migration and Data
Archiving solutions are used to move to COTS
solutions to retain, access, and leverage historical
mainframe data.

Ongoing development of refactored code
using ModPaaS
Refactored Java or C# code is fully maintainable,
following object oriented concepts and
paradigms such as encapsulation, abstraction,
modularization and loose coupling. Code is
populated into a target GitLab SCM repository,
and can then be optionally integrated with a
continuous integration workflow. We can support
you in building a default continuous integration
workflow with ModPaaS based on our experience
with solutions we use internally, e.g. Jenkins,
Gradle, SonarQube, Selenium, etc. This can
obviously be customized depending on your
own preferences. The workflow is completely
independent of any Advanced specific solutions
once the code is in the target repository. The
focus becomes on configuring the workflow to
extract code based on a specific trigger (e.g. SCM
update), then automatically running the code
through select solutions to support features such
as:

Code quality measurement
We can supply an initial set of SonarQube rules
with some limitations related to the original
application. For example, with automated
refactoring, it’s not possible to reduce the
cognitive complexity of a program. Depending
on the selected code conversion service level,
we can also improve the quality of the refactored
code by incorporating your suggested changes,
even from code coming as-is from the COBOL
program. In addition to analyzing and measuring
code quality against defined SonarQube rules, we
also recommend using an additional open source
static code analyzer solution such as FindBugs to
detect possible bugs in Java programs.

Automated test execution
We use Selenium as part of the continuous
build cycle to support the execution of created
test cases. Since Selenium test cases need to
be created after the application is running, the
tests won’t trigger on the initial translation. Once
created though they can be added to the build
cycle, and Jenkins will trigger the build using a
solution such as Gradle. The Gradle build project
packaging will include specific JUnit (for Java) or
NUnit (for C#) test cases to support batch job
testing and “headless” screen testing, in addition
to the Selenium test cases to be triggered. This
is a process that our development teams utilize
internally today.

Leverage a target IDE
Refactored code can be exported from the target
SCM and managed in your preferred IDE, e.g.
Eclipse, Microsoft Visual Studio, ItelliJ IDEA, etc.
You’re responsible for installing and configuring
third party solutions such as an IDE – and if
applicable, for supplying required licenses.

ModPaaS future roadmap
 > Offer customizable modernization options

for target refactored source code and build
environment, e.g. input into COBOL to Java
or C# code refactoring options, selection of
a target SCM (other than the default GitLab),
continuous integration and build solution
(other than Jenkins and Gradle, respectively).

 > Expanded language support for Business
Rules Mining, e.g. support for multiple COBOL
dialects and support for features such as Micro
Focus COBOL screen definitions.

 > Add non-COBOL language convertors to
Automated Refactoring capability.

 > Provide plugins for the select target
development environment (e.g. Eclipse, MS
Visual Studio) in order to map modernized
assets back to the eav repository.

ModPaaS: Solution Overview for Google Cloud
Platform
ModPaaS accessibility
ModPaaS is available from the Google Cloud
Platform Marketplace. You’re responsible for
managing and limiting access to the ModPaaS
environment using company and/or Google Cloud
Platform recommended security best practices,
such as implementing Active Directory Domain
Services and granting the least amount of
access with least privileges, etc. Once within the
ModPaaS environment, only users with specific
authorization can gain access to eav (and the eav
repository) and view specific source code.

More information
w modernsystems.oneadvanced.com e hello@oneadvanced.com

UK +44 0333 230 1884

Ditton Park, Riding Court Road Datchet,
Slough, Berkshire, SL3 9LL

US +1 855-905-4040

3200 Windy Hill Road, Suite 230 West,
Atlanta, GA 30339

© Advanced 2020. All rights reserved. Modern Systems Corporation t/a Advanced, registered in Delaware, USA is a wholly owned subsidiary of
Advanced Computer Software Group Limited t/a Advanced. A list of trading subsidiaries is available at www.oneadvanced.com/legal-privacy.
Advanced recognizes the trademarks of other companies and respective products in this document.

